Covariant Derivatives of Multivector and Multiform Fields

نویسنده

  • V. V. Fernández
چکیده

A simple theory of the covariant derivatives, deformed derivatives and relative covariant derivatives of multivector and multiform fields is presented using algebraic and analytical tools developed in previous papers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation along Multivector Fields

The Lie derivation of multivector fields along multivector fields has been introduced by Schouten (see cite{Sc, S}), and studdied for example in cite{M} and cite{I}. In the present paper we define the Lie derivation of differential forms along multivector fields, and we extend this concept to covariant derivation on tangent bundles and vector bundles, and find natural relations between them and...

متن کامل

Covariant Derivatives of Multivector and Extensor Fields

We give in this paper which is the second in a series of five a theory of covariant derivatives of multivector and extensor fields based on the geometric calculus of an arbitrary smooth manifold M, and the notion of a connection extensor field defining a parallelism structure on M. Also we give a novel and intrinsic presentation (i.e., one that does not depend on a chosen orthonormal moving fra...

متن کامل

The Bundles of Algebraic and Dirac-Hestenes Spinors Fields

The main objective of this paper is to clarify the ontology of DiracHestenes spinor fields (DHSF ) and its relationship with sum of even multivector fields, on a general Riemann-Cartan spacetime M=(M, g,∇, τg, ↑) admitting a spin structure and to give a mathematically rigorous derivation of the so called Dirac-Hestenes equation (DHE ) when M is a Lorentzian spacetime. To this aim we introduce t...

متن کامل

The Bundles of Algebraic and Dirac-Hestenes Spinor Fields

The main objective of this paper is to clarify the ontology of DiracHestenes spinor fields (DHSF ) and its relationship with even multivector fields, on a Riemann-Cartan spacetime (RCST) M =(M,g,∇, τg, ↑) admitting a spin structure, and to give a mathematically rigorous derivation of the so called Dirac-Hestenes equation (DHE ) in the case where M is a Lorentzian spacetime (the general case whe...

متن کامل

ar X iv : m at h / 07 03 09 4 v 1 [ m at h . D G ] 3 M ar 2 00 7 Geometric and Extensor Algebras and the Differential Geometry of Arbitrary Manifolds

We give in this paper which is the third in a series of four a theory of covariant derivatives of representatives of multivector and extensor fields on an arbitrary open set U ⊂ M , based on the geometric and extensor calculus on an arbitrary smooth manifold M. This is done by introducing the notion of a connection extensor field γ defining a parallelism structure on U ⊂ M , which represents in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008